Structural reliability assessment through surrogate based importance sampling with dimension reduction

نویسندگان

چکیده

We present a method for reliability assessment in extreme conditions from numerical simulator through surrogate based importance sampling. As proposed recent works the literature, Kriging is used to build an approximation of limit state function and optimal density. Our contribution then use sufficient dimension reduction which enables construction metamodel lower dimension. The so called augmented failure probability correction factor are recast this framework. Simple strategies refinement subspace described and, case Gaussian inputs, computationally efficient MCMC scheme aimed at sampling quasi-optimal density presented. non-Gaussian inputs also laid out it argued demonstrated simulations that approach can reduce number calls computer model, crucial analysis. Advantages supported by carried on industrial study concerned with response prediction wind turbine under loading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN ADAPTIVE IMPORTANCE SAMPLING-BASED ALGORITHM USING THE FIRST-ORDER METHOD FOR STRUCTURAL RELIABILITY

Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in reliability analysis. However, the large number of samples, often required for acceptable accuracy, makes it time-consuming. Importance sampling is a method on the basis of MCS which has been proposed to reduce the computational time of MCS. In this paper, a new adaptive importance sampling-based algorith...

متن کامل

Reliability Based Optimization with Metaheuristic Algorithms and Latin Hypercube Sampling Based Surrogate Models

Reliability based optimization (RBO) is one of the most appropriate methods for structural design under uncertainties. It searches for the best compromise between cost and safety while considering system uncertainties by incorporating reliability measures within the optimization. Despite the advantages of RBO, its application to practical engineering problem is still quite challenging. In this ...

متن کامل

Meta-model-based importance sampling for reliability sensitivity analysis

Reliability sensitivity analysis aims at studying the influence of the parameters in the probabilistic model onto the probability of failure of a given system. Such an influence may either be quantified on a given range of values of the parameters of interest using a parametric analysis, or only locally by means of its partial derivatives. This paper is concerned with the latter approach when t...

متن کامل

Importance Sampling: Computational Complexity and Intrinsic Dimension

Abstract: The basic idea of importance sampling is to use independent samples from one measure in order to approximate expectations with respect to another measure. Understanding how many samples are needed is key to understanding the computational complexity of the method, and hence to understanding when it will be effective and when it will not. It is intuitive that the size of the difference...

متن کامل

Importance Sampling: Intrinsic Dimension and Computational Cost

The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A maj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reliability Engineering & System Safety

سال: 2021

ISSN: ['1879-0836', '0951-8320']

DOI: https://doi.org/10.1016/j.ress.2020.107289